H atoms were refined isotropically in observed positions. After anisotropic refinement of the non- H atoms, one of the CF_{3} groups (C5) showed evidence of disorder, manifested in larger fluorine displacement parameters and significant residual electron density between the fluorine atomic positions. A disorder model including 28 additional parameters lowered $w R_{2}$ (all data) from 22.16 to 11.20%. Several different disorder models were tried, including combinations of restrictions on C-F bond distances and restraints on anisotropic displacement parameters. None of the models tried were completely satisfactory in that a wide range of $\mathrm{C}-\mathrm{F}$ bond lengths were observed for the disordered atoms. In the final model, restraints on displacement parameters were not included since these tended to raise the R factors without influencing the observed CF_{3} group geometry. Restraints were applied, however, to $\mathrm{C}-\mathrm{F}$ bond distances on the C 5 atom using a $\mathrm{C}-\mathrm{F}$ bond distance of $1.34 \AA$, with a standard deviation of 0.01 . The final $\mathrm{C}-\mathrm{F}$ distances for Cl ranged from 1.309 (4) to 1.343 (5) \AA, with a mean of 1.32 [2] \AA; on the C 5 atom, the range was 1.271 (9) to 1.403 (8) A., with a mean C-F distance of 1.32 [6] \AA. The angles around C 1 ranged from $104.9(3)$ to $114.7(3)^{\circ}$, with a mean of $109[3]^{\circ}$, while the angles around C 5 ranged from 91.3 (12) to $123.3(11)^{\circ}$, with a mean of $109[10]^{\circ}$.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1990b). Software used to prepare material for publication: SHELXTL-Plus.

Support from the Department of Chemistry of Georgetown University, Washington, DC, USA, is gratefully acknowledged. The diffractometer was obtained with a grant from the National Science Foundation.

[^0]
References

Adams, H., Bailey, N. A., Fenton, D. E. \& Khalil, R. A. (1993). Inorg. Chim. Acta, 209, 55-60.
Caneschi, A., Gatteschi, D. \& Rey, P. (1991). Prog. Inorg. Chem. 39, 1054-1058.
Dickman, M. H., Porter, L. C. \& Doedens, R. J. (1986). Inorg. Chem. 25, 331-429.
Montgomery, H. \& Lingafelter, E. C. (1968). Acta Cryst. B24, 11271128.

Onuma, S. \& Shibata, S. (1970). Bull. Chem. Soc. Jpn, 43, 2395-2397.
Pinkas, J., Huffman, J. C., Baxter, D. V., Chisholm, M. H. \& Caulton, K. G. (1995). Chem. Mater. 7, 1589-1596.

Romero, R. R., Cervantes-Lee, F. \& Porter, L. C. (1992). Acta Cryst. C48, 993-995.
Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1990b). SHELXTL-Plus. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994). XSCANS Users Manual. Version 2.18a. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 404-406

μ-Hydrido- μ-dicyclohexylphosphido-bis[dicyclohexylphosphine(tricarbonyl)rhenium]

Ulrich Flörke and Hans-Jürgen Haupt
Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany. E-mail: floe@mvaxac.uni-paderborn.de

(Received 19 September 1996; accepted 15 November 1990)

Abstract

The title compound, hexacarbonyl- $1 \kappa^{3} C, 2 \kappa^{3} C$ - μ-dicyclohexylphosphido $-1: 2 \kappa^{2} P$-bis (dicyclohexylphosphine)$1 \kappa P, 2 \kappa P$ - μ-hydrido-dirhenium $(R e-R e),\left[\mathrm{Re}_{2} \mathrm{H}\left(\mathrm{C}_{12} \mathrm{H}_{22}-\right.\right.$ $\mathrm{P})\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{P}\right)_{2}(\mathrm{CO})_{6}$], has an $\mathrm{Re}-\mathrm{Re}$ bond length of 3.2185 (8) \AA which is symmetrically bridged by a H and a P atom. Two terminal $\mathrm{PH}\left(\mathrm{C}_{6} \mathrm{H}_{11}\right)_{2}$ ligands adopt cis positions with respect to the phosphido bridge and have a mutually trans configuration.

Comment

The study of phosphido-bridged homo- and heteronuclear transition metal cluster compounds is of great interest due to their metal-metal bond stabilities under various reaction conditions (Haupt, Balsaa \& Flörke, 1988). The title compound, $\left[\operatorname{Re}_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{6}-\right.$ ($\left.\mathrm{PHCy}_{2}\right)_{2}$], (I) (Cy is cyclohexyl), is a new dinuclear example which was obtained from the reaction of $\left[\mathrm{Re}_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{NCCH}_{3}\right)_{2}\right]$ with HPCy_{2} in CHCl_{3} solution at 343 K .

The Re atom in (I) is surrounded by six non-metal ligands forming a distorted-octahedral coordination geometry (Fig. 1). These ligands are three carbonyl groups in trans positions with respect to the bridging $\mu-\mathrm{H}$ and μ-P atoms, and a PHCy_{2} ligand attached in an axial position. The second half of the molecule is symmetry related by a crystallographic twofold axis which runs through both bridging ligands. The two coordination octahedra around the metal atoms thus share one common edge along this axis.

The Re-Re bond length of 3.2185 (8) \AA fulfills the requirement of 18 valence electrons for each metal atom.

Fig. 1. The molecular structure of (I) with the cyclohexyl H atoms omitted. Displacement ellipsoids are plotted at the 50% probability level.

It is elongated by about $0.077 \AA$ compared with that of the unsubstituted carbonyl complex $\left[\operatorname{Re}_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PCy}_{2}\right)\right.$ (CO) ${ }_{8}$], (II) (Flörke \& Haupt, 1992), and is $0.025 \AA$ longer than the $\operatorname{Re}-\operatorname{Re}$ bond in $\left[\operatorname{Re}_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)\right.$ $(\mathrm{CO})_{6}\left(\mathrm{PPh}_{3}\right)_{2}$], (III) (Ph is phenyl), hitherto the longest bonding $\mathrm{Re}-\mathrm{Re}$ distance reported for such dinuclear carbonyl compounds (Haupt, Balsaa \& Flörke, 1987). Imposed by the crystallographic symmetry, the Re- μ P bond lengths are equal with values of 2.467 (2) \AA and the enclosed $\mathrm{Re}-\mathrm{P}-\mathrm{Re}$ angle is $81.45(7)^{\circ}$. The $\mu-\mathrm{H}$ position was determined from a difference Fourier map and refined; the $\mathrm{Re}-\mathrm{H}$ bond lengths and $\mathrm{Re}-\mathrm{H}-$ Re angle are 1.84 (4) \AA and $122(5)^{\circ}$, respectively. The terminal PHCy_{2} ligands, with an $\mathrm{Re}-\mathrm{P}$ bond length of 2.494 (2) Å, have a mutually trans configuration and are in cis positions with respect to the phosphido bridge.

Only three other related disubstituted carbonyl cluster compounds have been characterized so far by X-ray structure determination. The same cis arrangement of the non-carbonyl ligands as for (I) is found in $\left[\mathrm{Mn}_{2}(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{6}{ }^{(}{ }^{\text {BuNC}}\right)_{2}$] (Iggo, Mays, Raithby \& Hendrick, 1983), whereas an arrangement with the phosphine ligands positioned trans with respect to the phosphido bridge is realised with both the already mentioned compound (III) and $\left[\mathrm{Mn}_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PCy}_{2}\right)\right.$ $(\mathrm{CO})_{6}\left(\mathrm{PMe}_{3}\right)_{2}$] (Arif, Jones \& Schwab, 1986). Both compounds (I) and (III), with their different cis and trans configurations, reveal strong intramolecular steric interactions due to the bulky phosphine ligands. This can be seen from a comparison of the torsion angles. When
viewed down the $\mathrm{Re}-\mathrm{Re}$ bond in (I), the axial CO and PHCy_{2} ligands are in approximately eclipsed positions, with a torsion angle of $21.0(2)^{\circ}$. For the equatorial CO groups, the average value is $16.2(5)^{\circ}$. Similar conditions hold for compound (III) with a torsion angle of 12.6° (average) for the axial CO groups and of 16.0 and 25.3° for the equatorial CO and PPh_{3} ligands, respectively. The related unsubstituted compounds (II) and $\left[\operatorname{Re}_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PPh}_{2}\right)(\mathrm{CO})_{8}\right]$ (Flörke \& Haupt, 1994) show substantially smaller torsion angles, ranging from 2.3 to 6.2° (average values). Monosubstituted Mn or Re carbonyl cluster compounds [$M_{2}(\mu-\mathrm{H})\left(\mu-\mathrm{PR} R_{2}\right)(\mathrm{CO})_{7^{-}}$ $\left(\mathrm{P}_{3}\right)$], where L_{3} is HCy_{2} or Ph_{3}, also exhibit these terminal phosphine ligands in trans positions with respect to the $\mathrm{Re}-\mu$-P bond (Arif, Jones \& Schwab, 1986; Haupt, Balsaa, Flörke, 1988).

Experimental

Crystals of (I) were obtained from the reaction of $\left[\operatorname{Re}_{2}(\mu-\right.$ $\left.\mathrm{H})\left(\mu-\mathrm{PCy}_{2}\right)(\mathrm{CO})_{6}\left(\mathrm{NCCH}_{3}\right)_{2}\right]$ with HPCy_{2} in CHCl_{3} solution at 343 K . The product was recrystallized from a CHCl_{3}-pentane solution.

Crystal data

$\left[\mathrm{Re}_{2} \mathrm{H}\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{P}\right)\left(\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{P}\right)_{2}-\right.$	$\mathrm{Mo} K \alpha$ radiation
(CO)	
$M_{r}=1135.3$	$\lambda=0.71073 \AA$
Monoclinic	Cell parameters from 25
$C 2 / c$	reflections
	$\theta=7-15^{\circ}$

$$
\begin{aligned}
& a=17.491(4) \AA \\
& b=14.236(3) \AA \\
& c=18.656(4) \AA \\
& \beta=100.24(2)^{\circ} \\
& V=4571.4(16) \AA^{3} \\
& Z=4 \\
& D_{x}=1.650 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { not measured }
\end{aligned}
$$

Data collection

Siemens $R 3 m$ diffractometer $\omega-2 \theta$ scans
Absorption correction:
ψ scans (North, Phillips
\& Mathews, 1968)
$T_{\text {min }}=0.389, T_{\text {max }}=0.442$
5451 measured reflections
5290 independent reflections 3502 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}
$R(F)=0.0424$
$w R\left(F^{2}\right)=0.0635$
$S=0.944$
5290 reflections
245 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0192 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$

$$
\mu=5.438 \mathrm{~mm}^{-1}
$$

$\mu=5.438 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.21 \times 0.16 \times 0.15 \mathrm{~mm}$ Colourless
$R_{\text {int }}=0.0352$
$\theta_{\text {max }}=27.56^{\circ}$
$h=-22 \rightarrow 22$
$k=0 \rightarrow 18$
$l=0 \rightarrow 24$
3 standard reflections every 400 reflections intensity decay: 4%
$\Delta \rho_{\max }=0.630 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.709$ e \AA^{-3}
Extinction correction: SHELXTL
Extinction coefficient: 0.00004 (2)

Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

$U_{\text {eq }}=(1 / 3) \Sigma_{i} \Sigma_{j} U^{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
Rel	0.040342 (13)	0.28762 (2)	0.178908 (12)	0.02716 (8)
P1	0	0.1563 (2)	1/4	0.0259 (5)
P2	-0.08685 (9)	0.32913 (12)	0.10207 (8)	0.0330 (4)
Cl	0.0737 (3)	0.2156 (6)	0.1031 (3)	0.043 (2)
Ol	0.0950 (3)	0.1709 (4)	0.0592 (3)	0.071 (2)
C2	0.0771 (3)	0.4044 (5)	0.1452 (3)	0.039 (2)
O2	0.1051 (3)	0.4719 (4)	0.1269 (3)	0.072 (2)
C3	0.1442 (3)	0.2704 (4)	0.2328 (3)	0.0327 (14)
O3	0.2086 (2)	0.2634 (3)	0.2595 (2)	0.0526 (13)
Cl1	0.0822 (3)	0.0808 (4)	0.2944 (3)	0.0291 (13)
C12	0.0591 (3)	0.0061 (4)	0.3465 (3)	0.041 (2)
C13	0.1322 (4)	-0.0412 (5)	0.3895 (4)	0.050 (2)
C14	0.1814 (4)	-0.0840 (5)	0.3399 (4)	0.059 (2)
C15	0.2029 (4)	-0.0116 (5)	0.2873 (4)	0.055 (2)
C16	0.1306 (3)	0.0350 (4)	0.2437 (3)	0.040 (2)
C21	-0.1087 (3)	0.4576 (4)	0.0971 (3)	0.038 (2)
C22	-0.1134 (5)	0.4962 (5)	0.1715 (4)	0.067 (2)
C23	-0.1315 (5)	0.6021 (5)	0.1703 (4)	0.073 (2)
C24	-0.2026 (4)	0.6267 (6)	0.1162 (4)	0.067 (2)
C25	-0.1949 (4)	0.5923 (5)	0.0421 (4)	0.070 (2)
C26	-0.1800 (4)	0.4862 (5)	0.0427 (4)	0.052 (2)
C31	-0.1080 (4)	0.2897 (5)	0.0063 (3)	0.0427 (15)
C32	-0.0513 (4)	0.3315 (5)	-0.0391 (3)	0.049 (2)
C33	-0.0767 (5)	0.3016 (6)	-0.1192 (4)	0.075 (3)
C34	-0.0820 (6)	0.1989 (6)	-0.1275 (4)	0.088 (3)
C35	-0.1390 (5)	0.1585 (6)	-0.0825 (4)	0.073 (2)
C36	-0.1164 (5)	0.1861 (5)	-0.0021 (4)	0.063 (2)

Acta Cryst. (1997). C53, 406-408

Dichlorodimethylbis(3-methyladenine- N^{7})tin(IV)

Alan Hazell, ${ }^{a}$ Jiexiang Ouyang ${ }^{b}$ and Lian Ee Khoo ${ }^{b}$

${ }^{a}$ Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark, and ${ }^{b}$ School of Science, Nanyang Technological University, 469 Bukit Timah Road, Singapore 1025, Singapore. E-mail: ach@kemi.aau.dk
(Received 26 September 1996; accepted 9 December 1990)

Abstract

The title compound, $\left[\mathrm{SnCl}_{2}\left(\mathrm{CH}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}_{5}\right)_{2}\right]$, has been prepared from dimethyltin dichloride and 3-methyladenine in methanol. The coordination of the Sn atom

[^0]: Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: BS1010). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

