H atoms were refined isotropically in observed positions. After Acta Cryst. (1997). C53, 404-406 anisotropic refinement of the non-H atoms, one of the CF₃ groups (C5) showed evidence of disorder, manifested in larger fluorine displacement parameters and significant residual electron density between the fluorine atomic positions. A disorder model including 28 additional parameters lowered $wR_2(all$ data) from 22.16 to 11.20%. Several different disorder models were tried, including combinations of restrictions on C--F bond distances and restraints on anisotropic displacement parameters. None of the models tried were completely satisfactory in that a wide range of C-F bond lengths were observed for the disordered atoms. In the final model, restraints on displacement parameters were not included since these tended to raise the R factors without influencing the observed CF_3 group geometry. Restraints were applied, however, to C-F bond distances on the C5 atom using a C-F bond distance of 1.34 Å, with a standard deviation of 0.01. The final C-F distances for C1 ranged from 1.309 (4) to 1.343 (5) Å, with a mean of 1.32 [2] Å; on the C5 atom, the range was 1.271 (9) to 1.403 (8) Å, with a mean C-F distance of 1.32 [6] Å. The angles around C1 ranged from 104.9(3) to $114.7(3)^{\circ}$, with a mean of 109 [3]°, while the angles around C5 ranged from 91.3 (12) to 123.3 (11)°, with a mean of 109 [10]°.

Data collection: XSCANS (Siemens, 1994). Cell refinement: XSCANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL-Plus (Sheldrick, 1990b). Software used to prepare material for publication: SHELXTL-Plus.

Support from the Department of Chemistry of Georgetown University, Washington, DC, USA, is gratefully acknowledged. The diffractometer was obtained with a grant from the National Science Foundation.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: BS1010). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Adams, H., Bailey, N. A., Fenton, D. E. & Khalil, R. A. (1993). Inorg. Chim. Acta, 209, 55-60.
- Caneschi, A., Gatteschi, D. & Rey, P. (1991). Prog. Inorg. Chem. 39, 1054-1058.
- Dickman, M. H., Porter, L. C. & Doedens, R. J. (1986). Inorg. Chem. 25. 331–429.
- Montgomery, H. & Lingafelter, E. C. (1968). Acta Cryst. B24, 1127-1128.
- Onuma, S. & Shibata, S. (1970). Bull. Chem. Soc. Jpn, 43, 2395-2397.
- Pinkas, J., Huffman, J. C., Baxter, D. V., Chisholm, M. H. & Caulton, K. G. (1995). Chem. Mater. 7, 1589-1596.
- Romero, R. R., Cervantes-Lee, F. & Porter, L. C. (1992). Acta Cryst. C48, 993-995.
- Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1990b). SHELXTL-Plus. Structure Determination Software Programs. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XSCANS Users Manual. Version 2.18a. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

© 1997 International Union of Crystallography Printed in Great Britain - all rights reserved

μ -Hydrido- μ -dicyclohexylphosphido-bis[dicvclohexvlphosphine(tricarbonvl)rhenium]

ULRICH FLÖRKE AND HANS-JÜRGEN HAUPT

Anorganische und Analytische Chemie, Universität-GH Paderborn, Warburgerstr. 100, D-33098 Paderborn, Germany. E-mail: floe@mvaxac.uni-paderborn.de

(Received 19 September 1996; accepted 15 November 1996)

Abstract

The title compound, hexacarbonyl- $1\kappa^3 C$, $2\kappa^3 C$ - μ -dicyclohexylphosphido - 1: $2\kappa^2 P$ - bis (dicyclohexylphosphine) - $1\kappa P.2\kappa P-\mu$ -hydrido-dirhenium(Re—Re), [Re₂H(C₁₂H₂₂- $P(C_{12}H_{23}P)_2(CO)_6]$, has an Re---Re bond length of 3.2185 (8) Å which is symmetrically bridged by a H and a P atom. Two terminal $PH(C_6H_{11})_2$ ligands adopt cis positions with respect to the phosphido bridge and have a mutually trans configuration.

Comment

The study of phosphido-bridged homo- and heteronuclear transition metal cluster compounds is of great interest due to their metal-metal bond stabilities under various reaction conditions (Haupt, Balsaa & Flörke, 1988). The title compound, $[Re_2(\mu-H)(\mu-PCy_2)(CO)_6 (PHCy_2)_2$, (I) (Cy is cyclohexyl), is a new dinuclear example which was obtained from the reaction of $[\text{Re}_2(\mu-\text{H})(\mu-\text{PCy}_2)(\text{CO})_6(\text{NCCH}_3)_2]$ with HPCy₂ in CHCl₃ solution at 343 K.

The Re atom in (I) is surrounded by six non-metal ligands forming a distorted-octahedral coordination geometry (Fig. 1). These ligands are three carbonyl groups in *trans* positions with respect to the bridging μ -H and μ -P atoms, and a PHCy₂ ligand attached in an axial position. The second half of the molecule is symmetry related by a crystallographic twofold axis which runs through both bridging ligands. The two coordination octahedra around the metal atoms thus share one common edge along this axis.

The Re---Re bond length of 3.2185 (8) Å fulfills the requirement of 18 valence electrons for each metal atom.

Fig. 1. The molecular structure of (I) with the cyclohexyl H atoms omitted. Displacement ellipsoids are plotted at the 50% probability level.

It is elongated by about 0.077 Å compared with that of the unsubstituted carbonyl complex $[Re_2(\mu-H)(\mu-PCy_2) (CO)_{8}$, (II) (Flörke & Haupt, 1992), and is 0.025 Å longer than the Re-Re bond in $[Re_2(\mu-H)(\mu-PPh_2) (CO)_6(PPh_3)_2$], (III) (Ph is phenyl), hitherto the longest bonding Re-Re distance reported for such dinuclear carbonyl compounds (Haupt, Balsaa & Flörke, 1987). Imposed by the crystallographic symmetry, the Re— μ -P bond lengths are equal with values of 2.467 (2) Å and the enclosed Re—P—Re angle is 81.45 (7)°. The μ -H position was determined from a difference Fourier map and refined; the Re-H bond lengths and Re-H-Re angle are 1.84 (4) Å and 122 (5)°, respectively. The terminal PHCy₂ ligands, with an Re-P bond length of 2.494 (2) Å, have a mutually trans configuration and are in *cis* positions with respect to the phosphido bridge.

Only three other related disubstituted carbonyl cluster compounds have been characterized so far by X-ray structure determination. The same cis arrangement of the non-carbonyl ligands as for (I) is found in $[Mn_2(\mu H(\mu-PPh_2)(CO)_6(^{t}BuNC)_2$ (Iggo, Mays, Raithby & Hendrick, 1983), whereas an arrangement with the phosphine ligands positioned trans with respect to the phosphido bridge is realised with both the already mentioned compound (III) and $[Mn_2(\mu-H)(\mu-PCy_2) (CO)_6(PMe_3)_2$ (Arif, Jones & Schwab, 1986). Both compounds (I) and (III), with their different *cis* and trans configurations, reveal strong intramolecular steric interactions due to the bulky phosphine ligands. This can be seen from a comparison of the torsion angles. When viewed down the Re-Re bond in (I), the axial CO and PHCy₂ ligands are in approximately eclipsed positions, with a torsion angle of $21.0(2)^{\circ}$. For the equatorial CO groups, the average value is $16.2(5)^{\circ}$. Similar conditions hold for compound (III) with a torsion angle of 12.6° (average) for the axial CO groups and of 16.0 and 25.3° for the equatorial CO and PPh₃ ligands, respectively. The related unsubstituted compounds (II) and $[\text{Re}_2(\mu-\text{H})(\mu-\text{PPh}_2)(\text{CO})_8]$ (Flörke & Haupt, 1994) show substantially smaller torsion angles, ranging from 2.3 to 6.2° (average values). Monosubstituted Mn or Re carbonyl cluster compounds $[M_2(\mu-H)(\mu-PR_2)(CO)_7 (PL_3)$], where L_3 is HCy₂ or Ph₃, also exhibit these terminal phosphine ligands in trans positions with respect to the Re— μ -P bond (Arif, Jones & Schwab, 1986; Haupt, Balsaa, Flörke, 1988).

Experimental

~

Crystals of (I) were obtained from the reaction of $[Re_2(\mu -$ H) $(\mu$ -PCy₂)(CO)₆(NCCH₃)₂] with HPCy₂ in CHCl₃ solution at 343 K. The product was recrystallized from a CHCl3-pentane solution.

Crystal data	
$[\text{Re}_{2}\text{H}(\text{C}_{12}\text{H}_{22}\text{P})(\text{C}_{12}\text{H}_{23}\text{P})_{2}$ -	Mo $K\alpha$ radiation
(CO) ₆]	$\lambda = 0.71073 \text{ Å}$
$M_r = 1135.3$	Cell parameters from 25
Monoclinic	reflections
C2/c	$\theta = 7 - 15^{\circ}$

$[\text{Re}_2\text{H}(\text{C}_{12}\text{H}_{22}\text{P})(\text{C}_{12}\text{H}_{23}\text{P})_2(\text{CO})_6]$

$$a = 17.491$$
 (4) Å
 $\mu = 5.438 \text{ mm}^{-1}$
 $b = 14.236$ (3) Å
 $T = 293$ (2) K

 $c = 18.656$ (4) Å
 Prism

 $\beta = 100.24$ (2)°
 $0.21 \times 0.16 \times 0.15 \text{ mm}$
 $V = 4571.4$ (16) Å³
 Colourless

 $D_x = 1.650 \text{ Mg m}^{-3}$ $D_m \text{ not measured}$

Data collection

```
Siemens R3m diffractometer
                                       R_{\rm int} = 0.0352
\omega-2\theta scans
                                       \theta_{\rm max} = 27.56^{\circ}
Absorption correction:
                                       h = -22 \rightarrow 22
                                       k = 0 \rightarrow 18
  \psi scans (North, Phillips
  & Mathews, 1968)
                                       l = 0 \rightarrow 24
  T_{\rm min} = 0.389, T_{\rm max} = 0.442
                                       3 standard reflections
5451 measured reflections
                                          every 400 reflections
5290 independent reflections
                                          intensity decay: 4%
3502 reflections with
  I > 2\sigma(I)
```

Refinement

Refinement on F^2	$\Delta \rho_{\rm max} = 0.630 \ {\rm e} \ {\rm \AA}^{-3}$
R(F) = 0.0424	$\Delta \rho_{\rm min} = -0.709 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.0635$	Extinction correction:
S = 0.944	SHELXTL
5290 reflections	Extinction coefficient:
245 parameters	0.00004 (2)
H atoms: see below	Scattering factors from
$w = 1/[\sigma^2(F_o^2) + (0.0192P)^2]$	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)
$(\Delta/\sigma)_{\rm max} < 0.001$	

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$U_{\text{eq}} = (1/3) \sum_i \sum_j U^{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	z	U_{eq}
Rel	0.040342 (13)	0.28762 (2)	0.178908 (12)	0.02716 (8)
P1	0	0.1563 (2)	1/4	0.0259 (5)
P2	-0.08685 (9)	0.32913 (12)	0.10207 (8)	0.0330 (4)
Cl	0.0737 (3)	0.2156 (6)	0.1031 (3)	0.043 (2)
01	0.0950 (3)	0.1709 (4)	0.0592 (3)	0.071 (2)
C2	0.0771 (3)	0.4044 (5)	0.1452 (3)	0.039 (2)
02	0.1051 (3)	0.4719 (4)	0.1269 (3)	0.072 (2)
C3	0.1442 (3)	0.2704 (4)	0.2328 (3)	0.0327 (14)
O3	0.2086 (2)	0.2634 (3)	0.2595 (2)	0.0526 (13)
C11	0.0822 (3)	0.0808 (4)	0.2944 (3)	0.0291 (13)
C12	0.0591 (3)	0.0061 (4)	0.3465 (3)	0.041 (2)
C13	0.1322 (4)	-0.0412 (5)	0.3895 (4)	0.050 (2)
C14	0.1814 (4)	-0.0840 (5)	0.3399 (4)	0.059 (2)
C15	0.2029 (4)	-0.0116 (5)	0.2873 (4)	0.055 (2)
C16	0.1306 (3)	0.0350 (4)	0.2437 (3)	0.040 (2)
C21	-0.1087 (3)	0.4576 (4)	0.0971 (3)	0.038 (2)
C22	-0.1134 (5)	0.4962 (5)	0.1715 (4)	0.067 (2)
C23	-0.1315 (5)	0.6021 (5)	0.1703 (4)	0.073 (2)
C24	-0.2026 (4)	0.6267 (6)	0.1162 (4)	0.067 (2)
C25	-0.1949 (4)	0.5923 (5)	0.0421 (4)	0.070 (2)
C26	-0.1800 (4)	0.4862 (5)	0.0427 (4)	0.052 (2)
C31	-0.1080 (4)	0.2897 (5)	0.0063 (3)	0.0427 (15)
C32	-0.0513 (4)	0.3315 (5)	-0.0391 (3)	0.049 (2)
C33	-0.0767 (5)	0.3016 (6)	-0.1192 (4)	0.075 (3)
C34	-0.0820 (6)	0.1989 (6)	-0.1275 (4)	0.088 (3)
C35	-0.1390 (5)	0.1585 (6)	-0.0825 (4)	0.073 (2)
C36	-0.1164(5)	0.1861 (5)	-0.0021(4)	0.063 (2)

Table 2. Selected geometric parameters (Å, °)

Re1—P1	2.467 (2)	Re1—Re1 ⁱ	3.2185 (8)
Re1—P2	2.494 (2)	Re1—H1	1.84 (4)
P1—Re1—P2	100.22 (4)	C11 ⁱ —P1—C11	109.6 (4)
P1—Re1—Re1 ⁱ	49.28 (3)	Re1 ⁱ —P1—Re1	. 81.45 (7)
P2—Re1—Re1 ⁱ	89.81 (4)	Re1 ⁱ —H1—Re1	122 (5)
Symmetry code: (i)	$-x, y, \frac{1}{2}-z.$		

H atoms were refined riding on their carrier atoms, except for H1 and H2, which were located from the difference map and their positions refined.

Program(s) used to solve structure: *SHELXTL* (Sheldrick, 1995). Program(s) used to refine structure: *SHELXTL*.

Lists of atomic coordinates, displacement parameters, structure factors and complete geometry have been deposited with the IUCr (Reference: SK1060). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Arif, A. M., Jones, R. A. & Schwab, S. T. (1986). J. Organomet. Chem. 307, 219–229.
- Flörke, U. & Haupt, H.-J. (1992). Z. Kristallogr. 201, 295-297.
- Flörke, U. & Haupt, H.-J. (1994). Z. Kristallogr. 209, 702.
- Haupt, H.-J., Balsaa, P. & Flörke, U. (1987). Z. Anorg. Allg. Chem. 548, 151-160.
- Haupt, H.-J., Balsaa, P. & Flörke, U. (1988). Inorg. Chem. 27, 280-286.
- Iggo, J. A., Mays, M. J., Raithby, P. R. & Hendrick, K. (1983). J. Chem. Soc. Dalton Trans. pp. 205-215.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Sheldrick, G. M. (1995). SHELXTL. Version 5.0. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 406-408

Dichlorodimethylbis(3-methyladenine- N^7)-tin(IV)

Alan Hazell,^a Jiexiang Ouyang^b and Lian Ee Khoo^b

^aDepartment of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Århus C, Denmark, and ^bSchool of Science, Nanyang Technological University, 469 Bukit Timah Road, Singapore 1025, Singapore. E-mail: ach@kemi.aau.dk

(Received 26 September 1996; accepted 9 December 1996)

Abstract

The title compound, $[SnCl_2(CH_3)_2(C_6H_7N_5)_2]$, has been prepared from dimethyltin dichloride and 3-methyladenine in methanol. The coordination of the Sn atom

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved